Model 4 - Support Vector Machine
# First, create proper scaling and preprocessing
preProcess_range <- preProcess(train_data[,-which(names(train_data) == "Sleep_Quality")],
method = c("center", "scale"))
# Apply preprocessing to both training and test data
train_data_preprocessed <- predict(preProcess_range, train_data)
test_data_preprocessed <- predict(preProcess_range, test_data)
# Create a more robust control parameter
ctrl_svm <- trainControl(
method = "cv",
number = 5,
classProbs = TRUE,
verboseIter = TRUE,
allowParallel = TRUE
)
# Define a specific tuning grid for SVM
svm_grid <- expand.grid(
sigma = c(0.01, 0.02, 0.025, 0.03, 0.035, 0.04, 0.05),
C = c(0.5, 1, 2, 4, 8, 16)
)
# Train SVM with modified parameters
set.seed(123)
svm_model <- train(
Sleep_Quality ~ .,
data = train_data_preprocessed,
method = "svmRadial",
trControl = ctrl_svm,
tuneGrid = svm_grid,
preProcess = NULL, # Already preprocessed
verbose = FALSE
)
## + Fold1: sigma=0.010, C= 0.5
## - Fold1: sigma=0.010, C= 0.5
## + Fold1: sigma=0.020, C= 0.5
## - Fold1: sigma=0.020, C= 0.5
## + Fold1: sigma=0.025, C= 0.5
## - Fold1: sigma=0.025, C= 0.5
## + Fold1: sigma=0.030, C= 0.5
## - Fold1: sigma=0.030, C= 0.5
## + Fold1: sigma=0.035, C= 0.5
## - Fold1: sigma=0.035, C= 0.5
## + Fold1: sigma=0.040, C= 0.5
## - Fold1: sigma=0.040, C= 0.5
## + Fold1: sigma=0.050, C= 0.5
## - Fold1: sigma=0.050, C= 0.5
## + Fold1: sigma=0.010, C= 1.0
## - Fold1: sigma=0.010, C= 1.0
## + Fold1: sigma=0.020, C= 1.0
## - Fold1: sigma=0.020, C= 1.0
## + Fold1: sigma=0.025, C= 1.0
## - Fold1: sigma=0.025, C= 1.0
## + Fold1: sigma=0.030, C= 1.0
## - Fold1: sigma=0.030, C= 1.0
## + Fold1: sigma=0.035, C= 1.0
## - Fold1: sigma=0.035, C= 1.0
## + Fold1: sigma=0.040, C= 1.0
## - Fold1: sigma=0.040, C= 1.0
## + Fold1: sigma=0.050, C= 1.0
## - Fold1: sigma=0.050, C= 1.0
## + Fold1: sigma=0.010, C= 2.0
## - Fold1: sigma=0.010, C= 2.0
## + Fold1: sigma=0.020, C= 2.0
## - Fold1: sigma=0.020, C= 2.0
## + Fold1: sigma=0.025, C= 2.0
## - Fold1: sigma=0.025, C= 2.0
## + Fold1: sigma=0.030, C= 2.0
## - Fold1: sigma=0.030, C= 2.0
## + Fold1: sigma=0.035, C= 2.0
## - Fold1: sigma=0.035, C= 2.0
## + Fold1: sigma=0.040, C= 2.0
## line search fails -1.376226 -0.1541639 1.141328e-05 4.562427e-06 -2.503397e-08 -5.97109e-10 -2.884439e-13
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold1: sigma=0.040, C= 2.0
## + Fold1: sigma=0.050, C= 2.0
## - Fold1: sigma=0.050, C= 2.0
## + Fold1: sigma=0.010, C= 4.0
## - Fold1: sigma=0.010, C= 4.0
## + Fold1: sigma=0.020, C= 4.0
## - Fold1: sigma=0.020, C= 4.0
## + Fold1: sigma=0.025, C= 4.0
## - Fold1: sigma=0.025, C= 4.0
## + Fold1: sigma=0.030, C= 4.0
## - Fold1: sigma=0.030, C= 4.0
## + Fold1: sigma=0.035, C= 4.0
## - Fold1: sigma=0.035, C= 4.0
## + Fold1: sigma=0.040, C= 4.0
## - Fold1: sigma=0.040, C= 4.0
## + Fold1: sigma=0.050, C= 4.0
## - Fold1: sigma=0.050, C= 4.0
## + Fold1: sigma=0.010, C= 8.0
## - Fold1: sigma=0.010, C= 8.0
## + Fold1: sigma=0.020, C= 8.0
## - Fold1: sigma=0.020, C= 8.0
## + Fold1: sigma=0.025, C= 8.0
## - Fold1: sigma=0.025, C= 8.0
## + Fold1: sigma=0.030, C= 8.0
## - Fold1: sigma=0.030, C= 8.0
## + Fold1: sigma=0.035, C= 8.0
## line search fails -1.103827 -0.2544857 1.577235e-05 5.412526e-06 -2.465695e-08 -3.024031e-09 -4.052656e-13
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold1: sigma=0.035, C= 8.0
## + Fold1: sigma=0.040, C= 8.0
## line search fails -1.086797 -0.2752001 3.672123e-05 1.235877e-05 -5.608696e-08 -6.622958e-09 -2.141434e-12
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold1: sigma=0.040, C= 8.0
## + Fold1: sigma=0.050, C= 8.0
## - Fold1: sigma=0.050, C= 8.0
## + Fold1: sigma=0.010, C=16.0
## - Fold1: sigma=0.010, C=16.0
## + Fold1: sigma=0.020, C=16.0
## - Fold1: sigma=0.020, C=16.0
## + Fold1: sigma=0.025, C=16.0
## - Fold1: sigma=0.025, C=16.0
## + Fold1: sigma=0.030, C=16.0
## - Fold1: sigma=0.030, C=16.0
## + Fold1: sigma=0.035, C=16.0
## - Fold1: sigma=0.035, C=16.0
## + Fold1: sigma=0.040, C=16.0
## - Fold1: sigma=0.040, C=16.0
## + Fold1: sigma=0.050, C=16.0
## - Fold1: sigma=0.050, C=16.0
## + Fold2: sigma=0.010, C= 0.5
## - Fold2: sigma=0.010, C= 0.5
## + Fold2: sigma=0.020, C= 0.5
## line search fails -1.719261 0.1027207 1.436936e-05 6.306849e-06 -4.47361e-08 5.777024e-09 -6.063944e-13
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold2: sigma=0.020, C= 0.5
## + Fold2: sigma=0.025, C= 0.5
## - Fold2: sigma=0.025, C= 0.5
## + Fold2: sigma=0.030, C= 0.5
## - Fold2: sigma=0.030, C= 0.5
## + Fold2: sigma=0.035, C= 0.5
## - Fold2: sigma=0.035, C= 0.5
## + Fold2: sigma=0.040, C= 0.5
## - Fold2: sigma=0.040, C= 0.5
## + Fold2: sigma=0.050, C= 0.5
## - Fold2: sigma=0.050, C= 0.5
## + Fold2: sigma=0.010, C= 1.0
## - Fold2: sigma=0.010, C= 1.0
## + Fold2: sigma=0.020, C= 1.0
## - Fold2: sigma=0.020, C= 1.0
## + Fold2: sigma=0.025, C= 1.0
## line search fails -1.539249 -0.009769775 2.038327e-05 8.385695e-06 -5.285689e-08 3.392399e-09 -1.048949e-12
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold2: sigma=0.025, C= 1.0
## + Fold2: sigma=0.030, C= 1.0
## - Fold2: sigma=0.030, C= 1.0
## + Fold2: sigma=0.035, C= 1.0
## line search fails -1.571387 -0.02512287 1.526111e-05 6.403158e-06 -4.089134e-08 2.15254e-09 -6.10264e-13
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold2: sigma=0.035, C= 1.0
## + Fold2: sigma=0.040, C= 1.0
## - Fold2: sigma=0.040, C= 1.0
## + Fold2: sigma=0.050, C= 1.0
## - Fold2: sigma=0.050, C= 1.0
## + Fold2: sigma=0.010, C= 2.0
## - Fold2: sigma=0.010, C= 2.0
## + Fold2: sigma=0.020, C= 2.0
## - Fold2: sigma=0.020, C= 2.0
## + Fold2: sigma=0.025, C= 2.0
## - Fold2: sigma=0.025, C= 2.0
## + Fold2: sigma=0.030, C= 2.0
## - Fold2: sigma=0.030, C= 2.0
## + Fold2: sigma=0.035, C= 2.0
## - Fold2: sigma=0.035, C= 2.0
## + Fold2: sigma=0.040, C= 2.0
## - Fold2: sigma=0.040, C= 2.0
## + Fold2: sigma=0.050, C= 2.0
## - Fold2: sigma=0.050, C= 2.0
## + Fold2: sigma=0.010, C= 4.0
## - Fold2: sigma=0.010, C= 4.0
## + Fold2: sigma=0.020, C= 4.0
## - Fold2: sigma=0.020, C= 4.0
## + Fold2: sigma=0.025, C= 4.0
## - Fold2: sigma=0.025, C= 4.0
## + Fold2: sigma=0.030, C= 4.0
## - Fold2: sigma=0.030, C= 4.0
## + Fold2: sigma=0.035, C= 4.0
## - Fold2: sigma=0.035, C= 4.0
## + Fold2: sigma=0.040, C= 4.0
## - Fold2: sigma=0.040, C= 4.0
## + Fold2: sigma=0.050, C= 4.0
## - Fold2: sigma=0.050, C= 4.0
## + Fold2: sigma=0.010, C= 8.0
## - Fold2: sigma=0.010, C= 8.0
## + Fold2: sigma=0.020, C= 8.0
## - Fold2: sigma=0.020, C= 8.0
## + Fold2: sigma=0.025, C= 8.0
## - Fold2: sigma=0.025, C= 8.0
## + Fold2: sigma=0.030, C= 8.0
## - Fold2: sigma=0.030, C= 8.0
## + Fold2: sigma=0.035, C= 8.0
## - Fold2: sigma=0.035, C= 8.0
## + Fold2: sigma=0.040, C= 8.0
## - Fold2: sigma=0.040, C= 8.0
## + Fold2: sigma=0.050, C= 8.0
## - Fold2: sigma=0.050, C= 8.0
## + Fold2: sigma=0.010, C=16.0
## - Fold2: sigma=0.010, C=16.0
## + Fold2: sigma=0.020, C=16.0
## - Fold2: sigma=0.020, C=16.0
## + Fold2: sigma=0.025, C=16.0
## - Fold2: sigma=0.025, C=16.0
## + Fold2: sigma=0.030, C=16.0
## - Fold2: sigma=0.030, C=16.0
## + Fold2: sigma=0.035, C=16.0
## - Fold2: sigma=0.035, C=16.0
## + Fold2: sigma=0.040, C=16.0
## - Fold2: sigma=0.040, C=16.0
## + Fold2: sigma=0.050, C=16.0
## - Fold2: sigma=0.050, C=16.0
## + Fold3: sigma=0.010, C= 0.5
## line search fails -1.839268 0.1941855 1.507903e-05 7.086538e-06 -5.30206e-08 8.63984e-09 -7.382725e-13
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold3: sigma=0.010, C= 0.5
## + Fold3: sigma=0.020, C= 0.5
## - Fold3: sigma=0.020, C= 0.5
## + Fold3: sigma=0.025, C= 0.5
## - Fold3: sigma=0.025, C= 0.5
## + Fold3: sigma=0.030, C= 0.5
## - Fold3: sigma=0.030, C= 0.5
## + Fold3: sigma=0.035, C= 0.5
## - Fold3: sigma=0.035, C= 0.5
## + Fold3: sigma=0.040, C= 0.5
## - Fold3: sigma=0.040, C= 0.5
## + Fold3: sigma=0.050, C= 0.5
## - Fold3: sigma=0.050, C= 0.5
## + Fold3: sigma=0.010, C= 1.0
## - Fold3: sigma=0.010, C= 1.0
## + Fold3: sigma=0.020, C= 1.0
## - Fold3: sigma=0.020, C= 1.0
## + Fold3: sigma=0.025, C= 1.0
## - Fold3: sigma=0.025, C= 1.0
## + Fold3: sigma=0.030, C= 1.0
## - Fold3: sigma=0.030, C= 1.0
## + Fold3: sigma=0.035, C= 1.0
## - Fold3: sigma=0.035, C= 1.0
## + Fold3: sigma=0.040, C= 1.0
## - Fold3: sigma=0.040, C= 1.0
## + Fold3: sigma=0.050, C= 1.0
## - Fold3: sigma=0.050, C= 1.0
## + Fold3: sigma=0.010, C= 2.0
## - Fold3: sigma=0.010, C= 2.0
## + Fold3: sigma=0.020, C= 2.0
## line search fails -1.434554 -0.06069309 3.04085e-05 1.20467e-05 -7.104868e-08 2.286291e-09 -2.132941e-12
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold3: sigma=0.020, C= 2.0
## + Fold3: sigma=0.025, C= 2.0
## line search fails -1.39121 -0.07592312 1.428953e-05 5.589866e-06 -3.131905e-08 8.019344e-10 -4.430517e-13
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold3: sigma=0.025, C= 2.0
## + Fold3: sigma=0.030, C= 2.0
## - Fold3: sigma=0.030, C= 2.0
## + Fold3: sigma=0.035, C= 2.0
## - Fold3: sigma=0.035, C= 2.0
## + Fold3: sigma=0.040, C= 2.0
## - Fold3: sigma=0.040, C= 2.0
## + Fold3: sigma=0.050, C= 2.0
## - Fold3: sigma=0.050, C= 2.0
## + Fold3: sigma=0.010, C= 4.0
## - Fold3: sigma=0.010, C= 4.0
## + Fold3: sigma=0.020, C= 4.0
## - Fold3: sigma=0.020, C= 4.0
## + Fold3: sigma=0.025, C= 4.0
## - Fold3: sigma=0.025, C= 4.0
## + Fold3: sigma=0.030, C= 4.0
## - Fold3: sigma=0.030, C= 4.0
## + Fold3: sigma=0.035, C= 4.0
## - Fold3: sigma=0.035, C= 4.0
## + Fold3: sigma=0.040, C= 4.0
## - Fold3: sigma=0.040, C= 4.0
## + Fold3: sigma=0.050, C= 4.0
## - Fold3: sigma=0.050, C= 4.0
## + Fold3: sigma=0.010, C= 8.0
## - Fold3: sigma=0.010, C= 8.0
## + Fold3: sigma=0.020, C= 8.0
## - Fold3: sigma=0.020, C= 8.0
## + Fold3: sigma=0.025, C= 8.0
## - Fold3: sigma=0.025, C= 8.0
## + Fold3: sigma=0.030, C= 8.0
## - Fold3: sigma=0.030, C= 8.0
## + Fold3: sigma=0.035, C= 8.0
## - Fold3: sigma=0.035, C= 8.0
## + Fold3: sigma=0.040, C= 8.0
## - Fold3: sigma=0.040, C= 8.0
## + Fold3: sigma=0.050, C= 8.0
## - Fold3: sigma=0.050, C= 8.0
## + Fold3: sigma=0.010, C=16.0
## - Fold3: sigma=0.010, C=16.0
## + Fold3: sigma=0.020, C=16.0
## - Fold3: sigma=0.020, C=16.0
## + Fold3: sigma=0.025, C=16.0
## - Fold3: sigma=0.025, C=16.0
## + Fold3: sigma=0.030, C=16.0
## - Fold3: sigma=0.030, C=16.0
## + Fold3: sigma=0.035, C=16.0
## - Fold3: sigma=0.035, C=16.0
## + Fold3: sigma=0.040, C=16.0
## - Fold3: sigma=0.040, C=16.0
## + Fold3: sigma=0.050, C=16.0
## - Fold3: sigma=0.050, C=16.0
## + Fold4: sigma=0.010, C= 0.5
## line search fails -1.860099 0.2362963 1.594746e-05 7.44886e-06 -5.73602e-08 1.111118e-08 -8.319838e-13
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold4: sigma=0.010, C= 0.5
## + Fold4: sigma=0.020, C= 0.5
## - Fold4: sigma=0.020, C= 0.5
## + Fold4: sigma=0.025, C= 0.5
## - Fold4: sigma=0.025, C= 0.5
## + Fold4: sigma=0.030, C= 0.5
## - Fold4: sigma=0.030, C= 0.5
## + Fold4: sigma=0.035, C= 0.5
## - Fold4: sigma=0.035, C= 0.5
## + Fold4: sigma=0.040, C= 0.5
## - Fold4: sigma=0.040, C= 0.5
## + Fold4: sigma=0.050, C= 0.5
## - Fold4: sigma=0.050, C= 0.5
## + Fold4: sigma=0.010, C= 1.0
## - Fold4: sigma=0.010, C= 1.0
## + Fold4: sigma=0.020, C= 1.0
## - Fold4: sigma=0.020, C= 1.0
## + Fold4: sigma=0.025, C= 1.0
## - Fold4: sigma=0.025, C= 1.0
## + Fold4: sigma=0.030, C= 1.0
## - Fold4: sigma=0.030, C= 1.0
## + Fold4: sigma=0.035, C= 1.0
## - Fold4: sigma=0.035, C= 1.0
## + Fold4: sigma=0.040, C= 1.0
## - Fold4: sigma=0.040, C= 1.0
## + Fold4: sigma=0.050, C= 1.0
## - Fold4: sigma=0.050, C= 1.0
## + Fold4: sigma=0.010, C= 2.0
## - Fold4: sigma=0.010, C= 2.0
## + Fold4: sigma=0.020, C= 2.0
## - Fold4: sigma=0.020, C= 2.0
## + Fold4: sigma=0.025, C= 2.0
## - Fold4: sigma=0.025, C= 2.0
## + Fold4: sigma=0.030, C= 2.0
## - Fold4: sigma=0.030, C= 2.0
## + Fold4: sigma=0.035, C= 2.0
## - Fold4: sigma=0.035, C= 2.0
## + Fold4: sigma=0.040, C= 2.0
## - Fold4: sigma=0.040, C= 2.0
## + Fold4: sigma=0.050, C= 2.0
## - Fold4: sigma=0.050, C= 2.0
## + Fold4: sigma=0.010, C= 4.0
## - Fold4: sigma=0.010, C= 4.0
## + Fold4: sigma=0.020, C= 4.0
## - Fold4: sigma=0.020, C= 4.0
## + Fold4: sigma=0.025, C= 4.0
## - Fold4: sigma=0.025, C= 4.0
## + Fold4: sigma=0.030, C= 4.0
## - Fold4: sigma=0.030, C= 4.0
## + Fold4: sigma=0.035, C= 4.0
## - Fold4: sigma=0.035, C= 4.0
## + Fold4: sigma=0.040, C= 4.0
## - Fold4: sigma=0.040, C= 4.0
## + Fold4: sigma=0.050, C= 4.0
## - Fold4: sigma=0.050, C= 4.0
## + Fold4: sigma=0.010, C= 8.0
## - Fold4: sigma=0.010, C= 8.0
## + Fold4: sigma=0.020, C= 8.0
## - Fold4: sigma=0.020, C= 8.0
## + Fold4: sigma=0.025, C= 8.0
## - Fold4: sigma=0.025, C= 8.0
## + Fold4: sigma=0.030, C= 8.0
## - Fold4: sigma=0.030, C= 8.0
## + Fold4: sigma=0.035, C= 8.0
## - Fold4: sigma=0.035, C= 8.0
## + Fold4: sigma=0.040, C= 8.0
## - Fold4: sigma=0.040, C= 8.0
## + Fold4: sigma=0.050, C= 8.0
## - Fold4: sigma=0.050, C= 8.0
## + Fold4: sigma=0.010, C=16.0
## - Fold4: sigma=0.010, C=16.0
## + Fold4: sigma=0.020, C=16.0
## - Fold4: sigma=0.020, C=16.0
## + Fold4: sigma=0.025, C=16.0
## - Fold4: sigma=0.025, C=16.0
## + Fold4: sigma=0.030, C=16.0
## - Fold4: sigma=0.030, C=16.0
## + Fold4: sigma=0.035, C=16.0
## line search fails -0.9384687 -0.2536188 2.632307e-05 7.968486e-06 -3.198442e-08 -2.38014e-09 -8.608942e-13
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold4: sigma=0.035, C=16.0
## + Fold4: sigma=0.040, C=16.0
## - Fold4: sigma=0.040, C=16.0
## + Fold4: sigma=0.050, C=16.0
## - Fold4: sigma=0.050, C=16.0
## + Fold5: sigma=0.010, C= 0.5
## - Fold5: sigma=0.010, C= 0.5
## + Fold5: sigma=0.020, C= 0.5
## - Fold5: sigma=0.020, C= 0.5
## + Fold5: sigma=0.025, C= 0.5
## - Fold5: sigma=0.025, C= 0.5
## + Fold5: sigma=0.030, C= 0.5
## - Fold5: sigma=0.030, C= 0.5
## + Fold5: sigma=0.035, C= 0.5
## - Fold5: sigma=0.035, C= 0.5
## + Fold5: sigma=0.040, C= 0.5
## - Fold5: sigma=0.040, C= 0.5
## + Fold5: sigma=0.050, C= 0.5
## - Fold5: sigma=0.050, C= 0.5
## + Fold5: sigma=0.010, C= 1.0
## - Fold5: sigma=0.010, C= 1.0
## + Fold5: sigma=0.020, C= 1.0
## - Fold5: sigma=0.020, C= 1.0
## + Fold5: sigma=0.025, C= 1.0
## line search fails -1.552098 0.02674804 1.060076e-05 4.388755e-06 -2.792335e-08 2.708124e-09 -2.841234e-13
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold5: sigma=0.025, C= 1.0
## + Fold5: sigma=0.030, C= 1.0
## - Fold5: sigma=0.030, C= 1.0
## + Fold5: sigma=0.035, C= 1.0
## - Fold5: sigma=0.035, C= 1.0
## + Fold5: sigma=0.040, C= 1.0
## - Fold5: sigma=0.040, C= 1.0
## + Fold5: sigma=0.050, C= 1.0
## - Fold5: sigma=0.050, C= 1.0
## + Fold5: sigma=0.010, C= 2.0
## - Fold5: sigma=0.010, C= 2.0
## + Fold5: sigma=0.020, C= 2.0
## - Fold5: sigma=0.020, C= 2.0
## + Fold5: sigma=0.025, C= 2.0
## - Fold5: sigma=0.025, C= 2.0
## + Fold5: sigma=0.030, C= 2.0
## line search fails -1.404061 -0.0783257 2.743968e-05 1.06054e-05 -6.21655e-08 1.980913e-09 -1.684793e-12
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold5: sigma=0.030, C= 2.0
## + Fold5: sigma=0.035, C= 2.0
## line search fails -1.388707 -0.121921 1.381091e-05 5.428002e-06 -3.07104e-08 -2.599424e-11 -4.242795e-13
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold5: sigma=0.035, C= 2.0
## + Fold5: sigma=0.040, C= 2.0
## - Fold5: sigma=0.040, C= 2.0
## + Fold5: sigma=0.050, C= 2.0
## - Fold5: sigma=0.050, C= 2.0
## + Fold5: sigma=0.010, C= 4.0
## - Fold5: sigma=0.010, C= 4.0
## + Fold5: sigma=0.020, C= 4.0
## - Fold5: sigma=0.020, C= 4.0
## + Fold5: sigma=0.025, C= 4.0
## - Fold5: sigma=0.025, C= 4.0
## + Fold5: sigma=0.030, C= 4.0
## - Fold5: sigma=0.030, C= 4.0
## + Fold5: sigma=0.035, C= 4.0
## - Fold5: sigma=0.035, C= 4.0
## + Fold5: sigma=0.040, C= 4.0
## line search fails -1.201355 -0.1955691 1.129824e-05 4.087703e-06 -2.006066e-08 -1.034554e-09 -2.308792e-13
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold5: sigma=0.040, C= 4.0
## + Fold5: sigma=0.050, C= 4.0
## - Fold5: sigma=0.050, C= 4.0
## + Fold5: sigma=0.010, C= 8.0
## - Fold5: sigma=0.010, C= 8.0
## + Fold5: sigma=0.020, C= 8.0
## - Fold5: sigma=0.020, C= 8.0
## + Fold5: sigma=0.025, C= 8.0
## - Fold5: sigma=0.025, C= 8.0
## + Fold5: sigma=0.030, C= 8.0
## - Fold5: sigma=0.030, C= 8.0
## + Fold5: sigma=0.035, C= 8.0
## - Fold5: sigma=0.035, C= 8.0
## + Fold5: sigma=0.040, C= 8.0
## - Fold5: sigma=0.040, C= 8.0
## + Fold5: sigma=0.050, C= 8.0
## line search fails -1.031029 -0.2984478 1.22927e-05 4.260553e-06 -1.723084e-08 -2.449716e-09 -2.222507e-13
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold5: sigma=0.050, C= 8.0
## + Fold5: sigma=0.010, C=16.0
## - Fold5: sigma=0.010, C=16.0
## + Fold5: sigma=0.020, C=16.0
## - Fold5: sigma=0.020, C=16.0
## + Fold5: sigma=0.025, C=16.0
## - Fold5: sigma=0.025, C=16.0
## + Fold5: sigma=0.030, C=16.0
## - Fold5: sigma=0.030, C=16.0
## + Fold5: sigma=0.035, C=16.0
## - Fold5: sigma=0.035, C=16.0
## + Fold5: sigma=0.040, C=16.0
## line search fails -0.8952954 -0.3050781 1.44156e-05 4.301031e-06 -1.601663e-08 -1.97941e-09 -2.394029e-13
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
## - Fold5: sigma=0.040, C=16.0
## + Fold5: sigma=0.050, C=16.0
## - Fold5: sigma=0.050, C=16.0
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo,
## : There were missing values in resampled performance measures.
## Aggregating results
## Selecting tuning parameters
## Fitting sigma = 0.02, C = 0.5 on full training set